

Presentation by: Dr.sareh basiri Loghman hospital_SBMU

Firestein & Kelley's TEXTBOOK of RHEUMATOLOGY

GARY S. FIRESTEIN RALPH C. BUDD SHERINE E. GABRIEL GARY A. KORETZKY IAIN B. MCINNES JAMES R. O'DELL

Introduction

- hip and knee joints : two of the most commonly affected sites of musculoskeletal pain
- Geographic and ethnic variations
- knowledge of the anatomy and basic biomechanics of these joints

Knee anatomy

History

➢ Pain :

- articular surfaces, torn menisci ,quadriceps and patella tendon tears, bursitis, nerve damage, fractures, neoplasia, or infection
- Referred pain : less common

> Instability :

- usually episodic
- injuries to the quadriceps-patellar extensor mechanism , collateral ligaments , or cruciate ligaments
- distinguish true instability from the common complaint of "giving way"

History

- People in certain age groups : similar injuries
- location and character of the pain
- onset of pain
- the details of a traumatic event
- Swelling and onset of the swelling

History

- locking and pseudolocking
- Timing of the pain with activity
- patient's exercise tolerance, ability to perform activities of daily living, use of ambulatory assist devices, walking tolerance
- any previous treatments

Physical Examination : general

Assessment of coronal alignment

Measurement of leg lengths. (A) The **apparent leg length** is the distance from the umbilicus to the medial malleolus. (B) Pelvic obliquity causing an apparent leg-length discrepancy. (C) The **true leg length** is the distance from the anterior superior iliac spine to the medial malleolus.

Evaluation of leg lengths

Physical Examination : General

• Antalgic gaits

Physical Examination : General

Medial thrusts and Lateral thrusts

Physical Examination : General

 thrust into recurvatum
(back-knee deformity)

Physical Examination

Surface anatomy of anterior knee

Infrapatellar

Infrapatellar

fat pad

bursa

Patellar ligament

cruciate

ligament

Tibia -

Palpation of the medial and lateral joint lines

 The pes anserine is the insertion of the medial hamstring muscle tendons and is locate approximately 6 cm distal to the knee joint line along the anteromedial tibial shaft.

Lateral knee structures to palpate

iliotibial band syndrome

Hoffa's disease

Baker cyst

Physical Examination

- for each translational and rotational motion of the knee, both primary and secondary restraints exist.
- When a primary restraint is disrupted, motion will be limited by the secondary restraint.

- The collateral ligaments can be examined with stress applied in the coronal plane.
- They should be examined both in full extension and in 30 degrees of flexion

 \succ The ACL is one of the most frequently injured structures in the knee.

> ACL insufficiency is also common in patients with advanced osteoarthritis.

Common mechanisms of injury include :

- a direct blow to the lateral side of the knee (the "clipping" injury in football)
- noncontact injuries that occur during cutting, pivoting, and jumping.

- Patients often report an audible "pop" accompanied by the acute onset of knee swelling.
- > The most sensitive tests for diagnosis of an ACL injury :
- anterior drawer
- Lachman test
- pivot-shift tests

anterior drawer test

Lachman test

 The pivot shift test is positive if the tibia reduces with a "clunk" or a "glide" at 20 to 40 degrees of flexion.

- The PCL is the strongest ligament in the knee
- > The "dashboard" injury
- > The PCL can be evaluated with :
- posterior drawer test
- posterior sag test
- quadriceps active test

posterior drawer test

posterior sag test

quadriceps active test

• Injuries to the PCL are often accompanied by injuries to the posterolateral corner.

 posterolateral corner : lateral collateral ligament, the popliteofiular ligament, the popliteomeniscal attachment, the arcuate ligament, and the popliteus tendon and muscle

Physical Examination : Menisci

- The menisci are considered the shock absorbing cartilages of the knee and also provide rotational and translational restraint
- Meniscal tears usually occur with rotation of the flexed knee as it moves into extension.
- Tears of the medial meniscus are more common than tears of the lateral meniscus

Physical Examination : Menisci

"locking" and "clicking" or a sense of something not being right with the knee

physical findings : pain with hyperflexion and with hyperextension, joint line tenderness, effusion

> provocative tests :

- McMurray test
- Apley compression test

McMurray test

Apley compression test

Physical Examination : Quadriceps Tendon

- Injuries to the quadriceps tendon : most common in the sixth and seventh decades of life.
- Patients with SLE , renal failure, endocrinopathies , diabetes,...
- quadriceps tendon rupture after total knee arthroplasty

Physical Examination : Patella Tendon

tendonitis : an overuse injury

Rupture of the patella tendon : in patients younger than 40 years and is associated with chronic patella tendonitis

Physical Examination : Patellofemoral Pain

• A variety of factors contribute to the biomechanics of the patellofemoral joint :

- overuse
- the depth of the trochlea
- the shape of the patella
- quadriceps strength
- Q angle
- the length of the patella tendon
- the shape of the femoral condyles
- and the articular cartilage

- analysis of coronal alignment
- height of the patella relative to the tibial tubercle (patella alta or baja)
- J sign
- patellar tilt
- crepitus

Physical Examination : Patellofemoral Pain

Physical Examination : Patellofemoral Pain

Patellar mobility should be assessed using a quadrant system for passive mediolateral displacement of the patella relative to the trochlear groove

> Apprehension test

Imaging :Conventional Radiographs

 Standing AP (A), lateral (B), and Merchant's (C) views : OA

Imaging : CT

bony tumors

- in the trauma setting for detection of subtle fractures and evaluation of intra-articular fractures.
- In cases of distal femoral or proximal tibia fractures, CT is used to help the surgeon plan operative treatment.
- CT is also used to assess axial alignment of the femoral and tibial components in cases of painful total knee arthroplasty

Imaging : Ultrasound

- in arthrocentesis
- joint effusions and popliteal cysts
- quadriceps and patella tendon disruptions

Imaging : Nuclear Scintigraphy

very sensitive but not specific

It requires clinical correlation and should be used in conjunction with other imaging modalities.

- > Thee-phase bone scanning :
- greater specificity
- in cases of suspected osteomyelitis , osteonecrosis , stress fracture, and implant loosening
- Increased radionuclide uptake can be seen for up to 12 to 18 months after total knee arthroplasty. Asymmetric uptake in one area around the prosthesis should raise the question of loosening or periprosthetic fracture

Imaging : Nuclear Scintigraphy

Imaging : MRI

- > excellent visualization of :
- articular cartilage,
- cruciate ligaments, collateral ligaments,
- patella tendon, quadriceps tendon,
- Menisci
- bone marrow edema (contusion),
- stress fractures
- mass lesions
- "two-slice touch" rule

a tear (arrow) in the posterior horn of the medial meniscus.

Imaging : MRI

Hoffa's disease

Common Disorders in the Differential Diagnosis of Knee Pain

- OA
- RA-SPA
- tears of the menisci, ligaments
- Bursitis
- Popliteal Cysts
- osteochondritis desiccans
- osteochondral fractures

- referred pain from the hip
- vascular claudication , neurogenic claudication
- complex regional pain syndrome
- Neoplasia
- Infection

History

- the hip is a common site for referred pain from lumbosacral and intrapelvic disease.
- It is important to define the exact location of the pain.
- Activities or positions that aggravate and relieve the pain should be explored. The severity, frequency, and patterns of radiation of the pain also should be evaluated.
- Knowledge of the patient's **general level of functioning** is important
- The patient should be asked about any hip problems in childhood.
- Any previous treatments for hip pain should be discussed
- Osteoarthritis and inflammatory arthritis are two common causes of hip pain

- Ease of rising from a chair, postures, and walking speed all provide insight into the extent of a patient's disability.
- A general evaluation of the patient's spine, lower extremity alignment, and leg lengths is performed.
- Evaluation of gait
- Common causes of a limp include pain and abductor weakness.

- A) Normal single legged stance
- (B) Positive
 Trendelenburg lurch and negative
 Trendelenburg's sign
- (C) Positive
 Trendelenburg lurch
 with pelvic obliquity

Causes of abductor weakness :

- contracted or shortened gluteus medius
- coxa vara
- fracture
- dysplasia
- neurologic conditions
- aslipped capital femoral epiphysis

- Inspection : Previous surgical scars ,deformities, muscle atrophy
- Palpation of the bony landmarks should be performed (femoral neck?)

 Areas that are painful should be palpated

Tensor fascia latae muscle -

Gluteus medius muscle-

Gluteus medius bursa Gluteus minimus bursa Trochanteric bursa Iliotibial band Gluteus minimus muscle (cut and reflected downward)

>Inspection

> Palpation

≻ROM

> Special test

Thomas test : hip flexion contracture

Ober test : tightness of the iliotibial band

Ely's test : tight rectus femoris

piriformis test

FADIR (impingement test)

\succ Tests for SI joint :

- FABER tests
- Gaenslen's test
- Compression test
- Distraction test
- thigh thrust test
- sacral thrust

Physical Examination : Tests for SI joint

Physical Examination : Tests for SI joint

Gaenslen's test

snapping hip syndrome

Extra-articular causes of hip snapping include a thickened iliotibial band snapping over the greater trochanter , the iliopsoas tendon gliding over the iliopectineal eminence, the long head of the biceps tendon rubbing on the ischial tuberosity, and the iliofemoral ligament rubbing on the femoral head.

Intra-articular causes of snapping hip syndrome include loose bodies and large labral tears

Imaging : Conventional Radiographs

low AP pelvis view

AP hip view

Imaging : Conventional Radiographs

frog-lateral view

CT is used for assessment of :

- acetabular fractures
- femoral head fractures
- subtle femoral neck fractures
- acetabular nonunion
- Neoplasia

Nuclear Scintigraphy

> Ultrasound

Hip Arthrography

> MRI

Imaging

MRI is now commonly used for diagnosis of

- osteonecrosis
- Labral disease
- neoplasia
- effusion
- synovitis , tendonitis , bone edema
- gluteus medius tendon avulsions
- loose bodies
- transient osteoporosis of the hip
- occult femoral neck fractures
- nerve injury

a complete avulsion of the gluteus medius tendon

osteonecrosis

Common Disorders in the Differential Diagnosis of Hip Pain

- osteoarthrosis
- inflammatory arthritis
- osteonecrosis
- fractures
- trochanteric bursitis
- femoroacetabular impingement
- tears of the acetabular labrum

- transient osteoporosis of the proximal femur
- infection
- snapping hip syndrome
- osteitis pubis
- neoplasia
- inguinal hernia
- referred pain

